Beginning Level

We plan to “stay the course” for the coming year until we have enough data to feel that we can make an informed decision as to whether anything in our assessment plan should be altered. We have decided to change from an on-line only assignment to giving students the option to submit either on-line or in hard copy format. This improvement to the assessment process will more readily allow students to see their intellectual development over the course of the program.
Developing Level

Action Plan for 2011-2012 called for gathering more Capstone Evaluations and poster presentation evaluations. We were able to collect 20% more data for Capstone Evaluations and 35% more data for Poster Presentation Evaluations.

Going forward, we will establish benchmarks for Senior Exit Survey, Capstone Evaluation, and Poster Presentation and develop rubrics for Capstone Evaluations and Poster Presentations.

We will discuss and address return rate of Senior Exit Surveys and ways to encourage more faculty to submit more capstone course evaluations for consideration.

The results of the Sr. Exit Survey didn’t offer enough evidence to determine basic disciplinary knowledge. We will add a measure to the Disciplinary Content and Concept Assessment which will measure basic disciplinary content knowledge and misconceptions.
Acceptable Level

Student Learning Outcomes

Upon completion of either a BSP or BA degree from the Physics Department at GSU, all majors should be able to demonstrate the following:

1. Majors are expected to develop a conceptual understanding of physics principles. They should be able to demonstrate concepts in Newtonian Mechanics, Electricity, and Magnetism.

2. Majors are expected to develop state-of-the-art laboratory skills. They should be able to apply the scientific method to design, execute, analyze, and explain a scientific experiment to test a hypothesis.

3. Majors are expected to develop professional communication skills. They should be able to express understanding of physics concepts and experimental observations.

4. Majors are expected to retain and/or develop attitudes that are favorable toward learning physics. They should see physics as a coherent framework of ideas and indicate a willingness to continue learning about physics.

In addition, students completing the BSP degree should be able to demonstrate:

5. BSP Majors are expected to develop advanced problem solving skills. They should be able to apply advanced mathematics to solve complex problems involving physical phenomena.

Implementation of Previous Action Plan

SLO 1 - As proposed in the 2010-11 Detailed Assessment Report, data specific to physics majors has been collected and analyzed using two newly proposed measures, the FCI and CSEM. These data will now provide the assessment of student learning outcome one since a departmental final exam is no longer administered. In addition, baseline data from the FCI and CSEM over the last five years have analyzed during this assessment cycle as proposed last year allowing targets to be established.

SLO 4 - As proposed in the 2010-11 Report, data specific to physics majors has been collected and analyzed using two newly proposed measures, the MPEX and CLASS. This will allow monitoring of the evolution of majors attitudes toward physics in the future. This year students did not reach the desired targets; thus we will continue to monitor this student learning outcome.

SLO 3 and 5 - During the 2010-11 assessment cycle, it was determined majors need more
exposure to context-rich problems. That is, problems applied in new or unfamiliar situations. In addition, it was determined that majors need to improve their presentation skills as well as their graphing and curve-fitting skills. Changes were made in assignments given in upper level course during the 2011-12 academic year to address these needs. However, it was difficult to assess the impact of these changes, thus an additional student learning outcome and related measure has been suggested for next year. See Student Learning Outcome 5 and related measure.

Future Action Plan

SLO 5 - In order to address the effectiveness of the addition of more context-rich problems in the upper level courses, an additional assessment has been planned for the 2012-13 academic year. As outlined in the report above, the problem solving skills of BSP majors will evaluated in the advanced physics course. A rubric will be used to closely evaluate the development of problem solving skills. Next year targets will be established using baseline data.

This year’s FCI data revealed four content areas from PHYS 2211 that majors are struggling to master. These areas include: Motion Diagrams, Circular Motion, Newton’s First Law, and Newton’s Second Law. A two fold approach will be taken to address majors’ needs in these areas. First, additional ActivPhysics simulations will be included in all PHYS 2211 courses to strengthen future majors understanding of this material. In addition, as those students’ who were assessed during this cycle progress though the physics coursework additional emphasis will be placed on these topics in Classical Mechanics.

This year’s CSEM data revealed four content areas from PHYS 2212 that majors experienced difficulty with. These areas include: the visualization of Electrostatic Fields, Force on a Charged Particle due to a Magnetic Field, the direction of a Magnetic Field due to a Current Carrying Wire, and Induced EMF. A similar two fold approach will be taken to address majors’ needs in these areas. Additional activities will be included in all PHYS 2212 courses to strengthen future majors understanding of this material. In addition, as these current students progress through the program, additional emphasis will be placed on these topics in Classical Electromagnetic Theory.

SLO 2 and 3 - Evaluation of the Advanced Lab Presentations revealed majors are not mastering Student Leaning Outcomes Two and Three. It is possible student performance was low because the rubric used to measure student learning was not available to students prior to the presentations. This rubric was adapted and implements this year, because the previous rubric was too long for faculty to complete during a presentation. This rubric will be shared
with students this year as they begin preparing their presentations. So we will continue to closely monitor student performance next year in this area. In addition, additional emphasis will be placed in data analysis, sources of error, and communication skills in the Advanced Lab course.
Exemplary Level

Student Learning Outcomes

SLO 1: Graduating BA Music students will perform music from a variety of musical periods completing level 2 (sample level requirements are located in Appendices 2a, 2b, and 2c) in their Applied Instrument Area. Progress towards this learning outcome is assessed every semester in a performance jury before a faculty committee.

SLO 2: BA Music students will be able to identify, analyze, and articulate the common elements and organizational patterns /forms / structures of music and their interaction in aural, verbal, and visual analysis. This will take place in the second, third, and fourth year of study.

SLO 3: BA Music students will place music in historical, cultural, and stylistic contexts. This will take place in the third year of study.

Implementation of Previous Year’s Action Plan

During the 2010-2011 assessment cycle, it became apparent that Music had too many learning outcomes for the process to be manageable or effective. To remedy this problem, learning outcomes were consolidated from 15 to 3 for the 2011-2012 cycle. This gave the department a more manageable plan for effective assessment data to evaluate how well the department is meeting standards and outcomes as set forth by NASM, the accrediting body for music.

SLO 1 - In the 2010-2011 assessment cycle, data was collected but there was no consistency among faculty assessment rubrics. As a result, the applied area chairs worked on jury rubric formatting to make them more effective for the 2011-2012 reporting cycle. This helped with data collection, but there was still considerable variation, making it difficult to gather comparable data from each of the different instrumental areas. The resulting Action Plan for 2011-2012 is described below.

SLO 2 - Also in the 2010-2011 cycle, deficiencies in Music Theory and Sight Singing / Ear Training amongst B.A. students were noted. To address this weakness, a search was conducted to hire a Music Theory specialist to develop a more consistent Music Theory curriculum.

SLO 3 - Data collected in 2010-2011 cycle also revealed SLO weaknesses in Music History. To address this weakness, a tutoring program was developed; however, it was implemented only in the fall term. Funding cuts did not allow the program to continue in the spring term.
Action Plan for 2011-2012

SLO 1 - The applied faculty will work on the jury rubrics again so they can produce similar data based on the same criteria from all applied teaching areas. These improvements should make for easier data extraction and a more consistent report. The current data includes aggregate data for all applied students as well data for BA Music students for comparison. In addition, due to the relatively small number of BA Music majors, data was not separated out by year or level. Hopefully for the 2012-2013 assessment cycle, enrollment numbers will be sufficient so data can be separated by student level to track progress of cohorts through the system so faculty can determine if there are any disconnects in the current course offerings.

SLO 2 – The newly hired Music Theory specialist has proposed several methods to improve student performance and achievement of this outcome, including continuation and refinement of a theory diagnostic exam given to prospective new students so deficiencies can be noted at the outset, offering programmed theory courses to unprepared students prior to the start of their freshman year to avoid the current DFW rates, examining different music theory texts for possible adoption, re-evaluating the current syllabus for possible improvements, and working with the theory faculty to improve continuity of learning in a multi-sectional music theory/SSET course sequence. In cycle 2012-2013, music theory faculty will examine and compare student data by music degree program against the theory diagnostic exam administered to auditioning freshmen. Once enough data is collected to track students through the program, the department will be in a better position to determine whether student success or failure rates are related to a lack of preparatory skills at acceptance or poor course structure and delivery. In the meanwhile, music theory faculty continues to meet regularly to discuss issues related to student success and ways to improve the program and student learning in this area.

SLO 3 - Music History is known as one of the most difficult content areas in the department and students must study very hard to meet the expectations of the music history faculty and accrediting body guidelines. The music history faculty continues to refine course delivery and has developed a method to separate student data by degree program to assess trends in varying levels and abilities of comprehension and performance within the specific degree population to see if further changes are needed.